

BRIDGETON TOWNSHIP DELAWARE RIVER STREAMBANK EROSION STUDY November 2020

> Mary L. Paist-Goldman, P.E. PA License No. PE078834

Prepared by: Rippled Waters Engineering, LLC

Email: mary@rippledwatersllc.com Website: www.rippledwatersllc.com Tel: 732.735.3440 Milford, New Jersey

TABLE OF CONTENTS

1.0 Introduction	3
2.0 Site Overview	3
Flooding Information	4
Soils Information	5
Geology Information	6
Streams Information	6
PennDOT Drainage System	7
3.0 Detailed Review of Erosion Areas of C	Concern: 7
Area of Concern 1	7
Area of Concern 2	8
Area of Concern 3	8
Area of Concern 4	9
Area of Concern 5	9
Area of Concern 6	10
Area of Concern 7	11
4.0 Potential Solutions for the Erosion	11
Potential River-based Erosion Solutions _	12
Potential Solutions: Stormwater Erosion _	19
5.0 Recommendations	22

1.0 Introduction

Bridgeton Township (herein referred to as Bridgeton) contracted Rippled Waters Engineering, LLC (herein referred to as RWE) to conduct an erosion analysis on several areas of concern (herein referred to as AOCs) within the Township. There are seven Areas of Concern within the scope of this report as listed below:

- Area of Concern #1 Located at the northern end of Trails End Lane
- Area of Concern #2 Located just north of the intersection of Trails End Lane and River Road along Trails End Lane
- Area of Concern #3 Located near the discharge from an unnamed tributary to the Delaware across the street from Riverside Antiques
- Area of Concern #4 Located between Area of Concern #3 and Area of Concern #5 along River Road
- Area of Concern #5 Located immediately north of the Milford/Upper Black Eddy Bridge crossing the Delaware
- Area of Concern #6 Located south of the bridge in an area where the roadway and the top of the streambank are very close
- Area of Concern #7 Located near the municipal border with Tinicum Township

Generally, the AOCs are located along a 1.9-mile stretch of River Road (PA Route 32) from the border with Tinicum township to the beginning of Trails End Lane and the full extent of Trails End Lane representing a total of 2.3 miles of linear distance along these roadways. Based on our understanding, the project goals are as follows: (1) to analyze selected erosion sites, (2) determine the cause of erosion and to (3) propose stabilization measures to abate further erosion.

This report includes the results of our investigation into the erosion sites. In addition, it will give an overview of the soils, geology, and streams within the study area. Potential solutions will be reviewed for river and stormwater erosion including relative costs for implementation, an outline of the regulatory process for the solution implementation, as well as recommendations for moving forward.

2.0 Site Overview

The project area is located in Bridgeton Township, Bucks County, Pennsylvania. The project limits are bounded to the south by Tinicum Township, to the west by River Road, to the north by the termination of Trails End Lane, and to the east by the Delaware River. The Areas of Concern are located on both private and government-owned properties. A site map can be found in Appendix A. RWE conducted a desktop assessment of available data for the project site as part of the overall project. To that end, RWE reviewed information related to flooding, soils, geology, hydrology, and topography among others. The results of the desktop assessment are summarized herein.

Flooding Information

The entirety of the AOCs are within the Federal Emergency Management Agency (FEMA) Zone AE¹ of the Delaware River and they are also located within the mapped floodway of the Delaware River. Appendix A contains FEMA mapping of the AOCs with the floodway data highlighted for all AOC cross-sections and includes a cross-section above and below each AOC. The drainage areas to the gauge at Riegelsville and to a point downstream of the Tohickon Creek were evaluated in the FIS and are 6,328 and 6,588 square miles respectively. Cross-sections in the vicinity of Bridgeton Township are EO through ES and have anticipated velocities ranging between 9.6 and 12.6 feet per second during a 100-year storm event (equivalent to a 1-percent annual chance flood). Excerpts from the Bucks County FEMA Flood Insurance Study (FIS) has been included in Appendix E of this report for reference.

Based on information provided by Bridgeton, the erosion of the banks became more concerning beginning at a point after the heavy Delaware River floods during the summer of 2006 between June 24th and 28th. The flooding was attributed to several weather factors that included the stalling of the jet stream west of the Appalachian Mountains and a Bermuda High over the Atlantic Ocean. A tropical low off the North Carolina Coast kept a constant stream of tropical moisture entering the Mid-Atlantic, which resulted in heavy and prolonged rains that caused the Delaware River flooding. The USGS gauge at Riegelsville (located upstream of Bridgeton) recorded a peak crest of 32.98 feet, which was the fourth highest ever recorded.

A United States Geological Survey (USGS) Station is located in the Delaware River at Station 01458200 located in Upper Black Eddy; however, no data was available from this station for review in preparing this report. A USGS stream gauge is located downstream of Bridgeton in Frenchtown, New Jersey (Station 01458500) that continuously collects temperature, dissolved oxygen, pH, specific conductance, and turbidity in addition to water depth. The gauge has been collecting data since 1936, however continuous data at the station has only been collected since 2008. The maximum flood recorded at the gauge was recorded on August 20, 1955 when the gage height reached 27.79 feet. Information on the gauge height during the 2006 storms was not available at the time of the study, however, it is as being the most significant flooding along the Delaware in this region in recent memory.

¹ FEMA Zone AE represents the area inundated by a 1% annual chance flooding for which Base Flood Elevations (BFEs) have been determined.

Soils Information

RWE reviewed the United States Department of Agriculture Natural Resource Conservation Service (USDA NRCS) Web Soil Survey for the AOCs. As shown on the soils map included in Appendix A of this report, the site is underlain primarily by Delaware fine sandy loam (DaA) with small portions of Bowmansville-Knauers silt loam (Bo) and Hatboro-Codorus complex (HbA).

Delaware fine sandy loam is the dominant soil type within the AOCs. Delaware fine sandy loam generally consists of fine sandy loam to loamy fine sand through its profile extending 87 inches below grade. The depth to bedrock tends be 72 to 99 inches. The soils in this series are associated with alluvial fans and terraces. Delaware fine sandy loams have an erosion factor K² value of 0.24, which represents the susceptibility of the soil to sheet and rill erosion from the influence of water. In addition, RWE reviewed the wind erodibility group³ (WEG) and found that Delaware fine sandy loams are in group 3. Although these soils are not as susceptible to erosion by surface runoff as others in the project area, the WEG rating means that the soils are susceptible to erosion by other forces and because the soil is a sandy loam it lacks cohesion necessary to resist the shear stresses anticipated from higher flows in the Delaware River.

Bowmansville-Knauers silt loam is present in two locations of the AOCs - at the end of Trails End Lane, encompassing AOC#1 and just upstream, but not including AOC#6. Bowmansville-Knauers silt loams are generally associated with floodplains and have alluvial deposit parent materials. The soils have a typical profile of 17 inches of silt loam underlain by 7 inches of gravelly sandy loam and then stratified sand to gravelly sandy loam extending from 24 to 60 inches below the surface. The depth to bedrock in this soil series are typically 72 to 99 inches. Bowmansville-Knauers silt loams have an erosion factor K value of 0.43, which tends to be one of the highest potential soils for erosion from runoff. In addition, RWE reviewed the wind erodibility group (WEG) and found that Bowmansville-Knauers silt loams are in group 5. The K value for these soils indicates that they are extremely susceptible to erosion by surface runoff.

Hatboro-Codorus complex soils, which comprise approximately 307 linear feet of riverbank within AOC#2, typically consist of silt loam extending for a depth of 44 inches below existing grade underlain with silty clay loam of 10 inches in thickness and then sandy loam to a depth of 80 inches below grade.

² Factor K is one of six factors used in the Universal Soil Loss Equation (USLE) to predict average annual rates of soil loss by sheet and rill erosion in tons per acre per year. Estimates generated are based primarily on percentage of silt, sand, and organic matter and on soil structure and saturated hydraulic conductivity.

³ WEG consists of soils that have similar properties affecting their susceptibility to wind erosion. Soils are assigned to a group between 1 and 8 with soils in group 1 most susceptible to wind erosion and those in group 8 least susceptible.

The soils are associated with loamy alluvium derived from phyllite parent material and are generally associated with floodplains. Hatboro-Codorus complex soils have an erosion factor K value of 0.49, which tends to be one of the highest potential soils for erosion from runoff. In addition, RWE reviewed the wind erodibility group (WEG) and found that Hatboro-Codorus complex soils are in group 5. The K value for these soils indicates that they are extremely susceptible to erosion by surface runoff.

Complete information on the soil types mapped for the AOCs is located in Appendix B of this report for reference.

Geology Information

The AOCs are underlain by bedrock consisting of Trenton Gravel from the Quaternary age. The major lithologic constituents are unconsolidated clay and sand while unconsolidated silt and gravel make up the minor constituents. The deposits are alluvial in nature with the clay and silt stratifying to form clay-silt beds while the sand and gravel are interstratified with cross bedded sand. A map showing the geology of the project site is included in Appendix A of this report for reference.

Streams Information

There are three (3) mapped tributaries within the boundaries of Bridgeton Township that discharge into the Delaware River. Appendix A contains a map with the locations of the tributaries as they relate to the AOCs. The northernmost, and largest, is High Falls Creek that discharges just north of AOC#1. High Falls Creek has a drainage area of 2.37 square miles with estimated peak flow rates of 1,990 cubic feet per second (cfs) during a 1-percent frequency storm (100-year recurrence interval). RWE believes that flows from High Falls Creek are traveling subsurface through layers of gravel and sand in the soils along the riverbank resulting in erosion of the soils due the pressure build up of the groundwater in these areas. Seeps are not uncommon along the hillslopes west of River Road and these result in additional pressures on the soils of the streambanks.

Moving south, the next tributary is unnamed and discharges across the street from Riverview Antiques, there is a catch basin where the driveway meets River Road that is connected to the culvert conveying this unnamed tributary. The unnamed tributary has a drainage area of 0.6 square miles and has a peak discharge of 849 cfs during a 1-percent frequency storm (100-year recurrence interval). Given that the pipe associated with this discharge has a diameter of only 15 inches, there is a need for an increased culvert size to accommodate the flows from this tributary.

Mill Spring Creek crosses River Road just north of Berm Lane and has a drainage area of 0.52 square miles. The peak discharge is 776 cfs during the 1-percent frequency storm (100-year recurrence interval).

To understand potential influences of the streams on the erosion along the riverbanks, RWE also reviewed a tributary located south of the Bridgeton/Tinicum Township border. The tributary located in

Tinicum Township is known as Lodi Creek. Lodi Creek has a drainage area of 1.55 square miles and a peak discharge of 1,540 cfs during the 1-percent frequency storm (100-year recurrence interval).

Information reviewed for each of the tributaries in the Township was obtained from the USGS StreamStats tool and the full detail from StreamStats can be found in Appendix C.

PennDOT Drainage System

Along River Road north of the Bridgeton/Tinicum border and before the intersection of Trails End Lane, there are 14 culverts, some of which convey stormwater runoff under River Road and discharge it towards the Delaware River. As part of the preparation of this report, RWE obtained Straight Line Diagrams from PennDOT to review the sizing of the various pipes and their location within the Township. Three of the culverts convey mapped streams underneath River Road and 11 of the pipes convey stormwater runoff. Copies of the SLDs are included in Appendix D of this report for reference.

3.0 Detailed Review of Erosion Areas of Concern:

Based on RWE's review of the desktop data available and the site observations made on October 5th and October 28th, 2020, the AOCs experience erosion from a variety of causes. Some are experiencing erosion as a result of more frequent elevated water levels in the Delaware River. Others are experiencing erosion from stormwater runoff in the area of River Road from uncontrolled sheet flow or from existing stormwater outfall pipes. Still others are experiencing erosion from the presence of underground streams traveling along the silt and clay lenses within the soil profiles near the tributaries to the Delaware.

Area of Concern 1

At the terminus of Trails End Lane (in the yard of house number 1870) is a sinkhole forming adjacent to the bank of the Delaware River. The sinkhole is approximately 240 feet south of the High Falls Creek confluence. Along with a concrete pad on the downstream side of the confluence that is accumulating woody debris these conditions could produce a local eddy causing erosion. The bank is experiencing planar erosion which has created a void in the soil profile inducing cavitation. Continued failure at this site would lead to property loss and potential tree loss. The streambanks in AOC#1 is eroding, however, the erosion

7

not active during the site visits RWE conducted. The erosion of the bank may be a result of subsurface flows associated with the confluence of High Falls Creek.

Area of Concern 2

A portion of the streambank extending for a length of 90 feet is eroding in close proximity to the travel lane of Trails End Lane. AOC#2 is located across the street from 1810 Trails End Lane. High flows from the Delaware River continue to erode this bank as steep unvegetated slopes (~3H:1V) were noted. Tree fall has weakened past attempts at bank stabilization and further soil loss can be expected

due to the active erosion at the site. A large log running beneath an existing staircase and parallel to the bank may be exacerbating local erosion by inadvertently directing the stream flows into the bank. Nearby hardscaping is beginning to slide down the bank as a result of the erosion as well. Further erosion at this site may ultimately erode the active travelway of Trails End Lane.

RWE collected measurements of the

embankment at AOC#2 and developed typical cross-section A-A' of the streambank. The crosssection details the slopes of the bank from the edge of water at the Delaware River up to the top of the embankment along the roadway. and the cross-sections are shown on the map included in Appendix A.

Area of Concern 3

Across from Riverview Antiques along River Road, there is a 15" diameter cast iron stormwater outfall pipe inside a corrugated metal sleeve. It appears that the sleeve was intended to direct the runoff from the pipe to the bottom of the streambank. The top of the sleeve extends above the pavement surface, so the water itself no longer enters the pipe from the pavement itself. The condition of the outfall pipe was difficult to view given its location within the corrugated metal pipe, however, it can be assumed that the sleeve was also installed to protect the pipe's integrity. Currently, stormwater runoff is eroding the soil in and around the corrugated pipe back migrating upwards from the bottom of the sleeve towards the road. This erosion has exposed the guardrail I-beams. As erosion continues the structural integrity of the guardrail and the pavement may become compromised.

Area of Concern 4

Across from 1750 River Road, approximately 100 linear feet of the streambank is eroding because of both high flows in the Delaware as well as stormwater runoff from River Road. The latter is causing rills and gullies to form along the bank which has begun to result in tree loss. There are sections where very little land is left between the bank and the roadway pavement and further erosion may result in damage to River Road and loss of the active travelway.

Area of Concern 5

Just north of the Upper Black Eddy/Milford bridge there is significant streambank erosion extending for a length of ~175 feet. This erosion is caused by a combination of the flows in the river together with local stormwater runoff erosion. An existing stormwater pipe crossing under River Road is nearly level with the guardrail Ibeams. The proximity of the

stormwater outfall discharge to the roadway elevation without the presence of conduit outlet protection is causing severe erosion in this location. The erosion has continued to a point where several of the guardrail beams are completely exposed. The location of this erosion is also such that it is at a point where the cross-section of the Delaware River is narrower. This results in increased near bank erosion and shear stresses acting on the streambank. The erosion has progressed to a point where it is going to cause collapse of River Road and without remediation significant road damage is to be expected. Typical Cross-Section B-B' is included in Appendix A.

Area of Concern 6

At AOC#6, there is an extensive area of exposed bedrock at the bottom of the bank. The banks in this area were observed to have near vertical slopes in several locations and are only a few feet from impacting the active travelway of River Road. The length of this area of the streambank extends for 1,800 feet, however, erosion of the banks is intermittent and is estimated to be less than 300 linear feet in total. Tree fall may

result in significant sloughing of the streambank could cause detrimental impacts to the roadway. Eddies are forming along the edge of the pavement where concentrated street flow is collecting in low lying depressions. This stormwater pooling will likely promote additional tree fall in the area and could result in increased erosion of the overall bank given its vertical configuration.

Area of Concern 7

Located just to the north of the Bridgeton/Tinicum border, this AOC extends over a length of 350 feet with intermittent rills and gullies forming from stormwater running of as sheet flow from River Road. The gullies if left untreated could expose guardrail I-beams and rilling could cause tree fall and bank erosion. Typical Cross-Section C-C' was developed for the banks in this reach and is located in Appendix A.

4.0 Potential Solutions for the Erosion

To address the various modes of erosion observed along the streambanks of the Delaware River throughout the AOCs, RWE reviewed various options for potential stabilization. Given the causes of erosion throughout the AOCs vary, there are multiple potential solutions for stabilizing the streambanks. Techniques are divided into two categories: erosion as a result of stream flows or stormwater-based erosion. The techniques reviewed and detailed herein include the following:

- VMSE,
- timber crib walls,
- riprap (including half dense riprap technique),
- gabions,
- sheet piling, and
- traditional retaining walls.

For stormwater-based erosion, the stabilization techniques reviewed include:

- Drop manholes,
- Vegetated swales,
- Vegetated filter strips, and
- Level spreaders.

The discussion below includes descriptions of the techniques, pros and cons of each, and general costs that can be anticipated for design and construction of the techniques.

Potential River-based Erosion Solutions

Vegetated Mechanically Stabilized Earth (VMSE) Wall

Vegetated Mechanically Stabilized Earth walls consist of alternating layers of live branches and compacted soil backfill to repair small, localized slumps and holes in streambanks. These are also knowns as vegetated geogrids and use natural or synthetic geotextile materials that are wrapped around each soil lift between the layers of live branch cuttings. VMSE walls can be constructed on slopes of 1H:1V or steeper. Soil lifts tend to be 12 to 18 inches in thickness.

Pros and Cons

Below is a short summary of potential pros and cons of using VMSE walls to stabilize streambanks in the AOCs.

Pros	Cons
Uses natural materials and incorporates	Can be complex to build
vegetation	
Useful in restoring bends in the streambank	Can be expensive if soils need to be imported
Provide habitat for wildlife and	Must be built during low-flow conditions
macroinvertebrates	Must be built during low-now conditions
	Should be used in areas where velocities are
	generally less than 8 feet per second

Figure 1. Typical VMSE detail (from USDA NRCS Engineering Handbook)

Costs

Costs for construction for this type of application along the Delaware River can be expected to be on the order of \$500/linear foot to \$750/linear foot depending on the amount of soil that must be imported to the site. Costs associated with design and permitting for the project can be assumed to be between 20 and 33 percent of the construction costs for this technique.

RWE recommends this technique be considered for AOC#1, AOC#2 and AOC#5. In these locations, VMSE walls may be suitable as there is sufficient area to construct this type of technique and the technique will provide long-term stabilization.

Timber Cribwalls

A timber cribwall consists of a box-like interlocking arrangement of untreated log or timber members. Once the live cuttings root and become established, the subsequent vegetation gradually takes over the structural functions of the wood members. Timber crib walls should be tilted back or battered if the system is built on a smooth, evenly sloped surface. These timber crib walls are appropriate to use at the base of a slope where a low wall may be required to stabilize the toe of the

slope and reduce its steepness. These can be used in areas both above and below water were stable streambeds exist.

Pros and Cons

Figure 2. Typical timber crib wall detail (from USDA NRCS Engineering Handbook)

Below is a short summary of potential pros and cons of using timber walls to stabilize streambanks in the AOCs.

Pros	Cons
Uses natural materials and incorporates vegetation and maintains a natural appearance	Can be complex to build
Effective in areas where strong currents are	Can be expensive if trees/timber need to be
present	imported
Provide habitat for wildlife and	Can be expensive to maintain
macroinvertebrates	
Useful in areas where space is limited, and a	
more vertical structure is required	

Costs

Costs for construction for this type of application along the Delaware River can be expected to be on the order of \$750/linear foot to \$1,500/linear foot depending on the number of trees/timber that must

be imported to the site. Costs associated with design and permitting for the project can be assumed to be between 20 and 33 percent of the construction costs for this technique.

RWE recommends this technique be considered for AOC#5. In this location, a timber crib wall may be suitable and will provide long-term stabilization.

Riprap (or Half Dense Riprap)

Rock riprap, properly designed and placed, can be an effective method of streambank protection, however, frequently the design or the installation of rock riprap is flawed, and the result is a significant failure of the bank. Riprap banks cannot be graded steeper than 1.5H:1V. Half dense riprap is a variation of the riprap bank stabilization technique that involves the placement of vegetation in gaps amongst the riprap to ensure some level of vegetative cover. Use of the half dense method offers the potential for a bioengineered solution that still achieves the stabilization that the riprap provides.

Figure 3. Typical detail of riprap slope (from USDA NRCS Engineering Handbook)

Pros and Cons

Below is a short summary of potential pros and cons of using riprap or half dense riprap to stabilize streambanks in the AOCs.

Pros	Cons
Has structural flexibility. It can be designed to	Can lead to significant bank failures if designed
self-adjust to eroding conditions.	or constructed incorrectly.
Has a long-life span	Limited to slopes of 1.5H:1V
Can be designed for high velocity conditions.	Typically limited to toe protection applications
	Difficult to permit due to environmental
	restrictions

Costs

Costs for construction for this type of application along the Delaware River can be expected to be on the order of \$250/linear foot to \$500/linear foot depending on the location of the riprap that must be imported to the site. The cost of quarrying, transporting, and placing stone and the large quantity of stone that may be needed must be considered. Costs associated with design and permitting for the project can be assumed to be 20 percent of the construction costs for this technique.

RWE recommends this technique be considered for AOC#5. In this location, half dense riprap may be suitable and will provide long-term stabilization.

Gabions

Rock gabions consist of rectangular containers fabricated from a triple twisted, hexagonal mesh of heavily galvanized steel wire. Empty gabions are placed in position, wired to adjoining gabions, filled with stones, and then folded shut and wired at the ends and sides. Gabions can be used on steeper slopes (greater than 1.5H:1V) and are effective where the size of riprap is larger than can be reasonably sourced for the site. Vegetation can be incorporated into rock gabions, if desired, by placing live branches on each consecutive layer between the rock-filled baskets (fig. 15). These gabions take root inside the gabion baskets and in the soil behind the structures. In time the roots consolidate the structure and bind it to the slope.

Rooted/leafed condition of the living plant material is not reconstruction of

Figure 4. Typical gabion basket detail (from USDA NRCS Engineering Handbook)

Pros and Cons

Below is a short summary of potential pros and cons of using gabions to stabilize streambanks in the AOCs.

Pros	Cons
•	Have a limited life expectancy.
Lower cost than many structural techniques	Prone to vandalism
Work well at the base of a slope where a low wall may be required to stabilize the toe of the slope and reduce its steepness.	Difficult to permit due to environmental restrictions
Tolerate limited foundation movement.	Not designed to resist large lateral earth stresses and should have a maximum height of five feet.

Costs

Typical costs for construction tend to be on the order of \$200/linear foot to \$400/linear foot. Costs associated with design and permitting for the project can be assumed to be 20 percent of the construction costs for this technique.

RWE does not recommend the use of gabion baskets except potentially at AOC#2. This would need to be carefully reviewed before being implemented as it relates to velocities and shear stresses within the Delaware before proceeding.

Sheet Piling

There are numerous sheet piling techniques used for streambank stabilization. RWE reviewed two techniques typically associated with bioengineering applications for their applicability to the AOCs. Sheet piling revetments built with wire or geotextile fencing are continuous single or double row of pilings with a facing of woven wire or geogrid material. The space between double rows of pilings is filled with rock and brush. Piling revetments with slotted boards were, however, considered. This type of revetment consists of slotted board fencing made of wood pilings and horizontal wood Timbers. (Variations include different fence heights, double rows of slotted fence, and use of woven wire in place of timber boards. The size and spacing of pilings, cross members, and vertical fence boards depend on height of fence, stream velocity, and sediment load.

Given the limitations of bioengineered sheet piling in the placement along the Delaware River, these techniques were eliminated from consideration. Traditional sheet piling applications include plastic, prestressed concrete, and steel and could be utilized along the banks of the Delaware.

Pros and Cons

Below is a short summary of potential pros and cons of using sheet piling to stabilize streambanks in the AOCs.

Pros	Cons
Low maintenance	Extremely expensive
Prevents erosion and scouring	Requires heavy equipment to install
Works well in areas with limited area for	Difficult to permit due to environmental
installation of other stabilization techniques	restrictions
	May exacerbate downstream erosion if not
	designed or installed properly

Costs

Typical costs for construction tend to be on the order of \$500/linear foot to \$2,000/linear foot. Costs associated with design and permitting for the project can be assumed to be 33 percent of the construction costs for this technique.

RWE does not recommend the use of sheet piling for any stabilization in the AOCs.

Retaining Walls

RWE considered the use of traditional retaining walls for the slope stabilization along the Delaware. Retaining walls are created to retain soils. This method can be used in stream channels of all types and sizes and is suitable for channels with widely fluctuating water levels and high velocities.

Pros and Cons

Below is a short summary of potential

pros and cons of using retaining walls to stabilize streambanks in the AOCs.

Pros	Cons
Low maintenance	Extremely expensive
Prevents erosion and scouring	Requires heavy equipment to install
Works well in areas with limited area for	Difficult to permit due to environmental
installation of other stabilization techniques	restrictions
	May exacerbate downstream erosion if not
	designed or installed properly

Costs

Typical costs for construction tend to be on the order of \$1,000/linear foot to \$3,000/linear foot. Costs associated with design and permitting for the project can be assumed to be 33 percent of the construction costs for this technique.

RWE recommends that retaining walls be considered for AOC#2 and AOC#6 if needed. It can be costly to design and permit this solution, however, it may be the only viable option in areas where there is limited work area to construct other measures.

Potential Solutions: Stormwater Erosion

Drop Manholes

Drop manhole structures can be used to lower the elevation of stormwater conveyance pipes crossing River Road. Most of the outfalls within Bridgeton Township discharge at or near the elevation of the road surface which is significantly higher than the normal water surface within the Delaware River. As a result, the banks of the stream are being eroded from sheet flow and concentrated flow of stormwater runoff from the roadway itself. Drop manholes allow the water to be safely conveyed to a lower elevation where the discharge can be across an area with a shallower slope and reduce the potential for erosion.

Pros and Cons

Below is a short summary of potential pros and cons of using vegetated swales for stormwater erosion in the AOCs.

Pros	Cons
Reduces erosion potential of the slope	May be negatively impacted by high river flows
Relatively low cost	Not suitable for space constrained applications

Costs

Typical costs for construction tend to be on the order of \$5,000 to \$10,000 each for the manhole structures and it can be assumed that additional pipe runs, and outfall structures will also be necessary to ensure proper functionality. Costs associated with design and permitting for the project can be assumed to be 33 percent of the construction costs for this technique.

RWE recommends the use of this technique at AOC#3. This will address the erosion in and around the existing outfall pipe.

Vegetated Swale

Vegetated swales are broad, shallow channels designed to slow runoff, promote infiltration, and filter pollutants and sediments in the process of conveying runoff. Vegetated Swales provide an environmentally superior alternative to conventional curb and gutter conveyance systems, while providing partially treated (pretreatment) and partially distributed stormwater flows

to subsequent BMPs. Swales are often heavily vegetated with a dense and diverse selection of native, close-growing, water-resistant plants with high pollutant removal potential. The various pollutant removal mechanisms of a swale include: sedimentary filtering by the swale vegetation (both on side slopes and on bottom), filtering through a subsoil matrix, and/or infiltration into the underlying soils with the full array of infiltration-oriented pollutant removal mechanisms.

Pros and Cons

Below is a short summary of potential pros and cons of using vegetated swales for stormwater erosion in the AOCs.

Pros	Cons
Environmentally sensitive	Have a limited life expectancy.
Lower cost than many structural techniques	Not suitable for steep slopes
Reduces the overall time of concentration for stormwater runoff to the river	Not suitable for space constrained applications

Costs

Typical costs for construction tend to be on the order of \$25/linear foot to \$40/linear foot. Costs associated with design and permitting for the project can be assumed to be 20 percent of the construction costs for this technique.

RWE recommends this technique be considered for AOC#4, AOC#6 and AOC#7. There appears to be room to install swales to collect runoff and convey them to existing outfalls in this region,

Vegetated Filter Strip

Filter strips are gently sloping, densely vegetated areas that filter, slow, and infiltrate sheet flowing stormwater.

Pros and Cons

Below is a short summary of potential pros and cons of using vegetated filter strips for stormwater erosion in the AOCs.

Pros	Cons
Environmentally sensitive	Can be costly depending on the vegetation
	selected and the width of the filter strip

Lower cost than many structural techniques	Not suitable for steep slopes
Reduces the overall time of concentration for	Not suitable for space constrained applications
stormwater runoff to the river	

Costs

Typical costs for construction tend to be on the order of \$20/linear foot to \$100/linear foot. Costs associated with design and permitting for the project can be assumed to be 20 percent of the construction costs for this technique.

Although there are no areas within the project limits that this technique can be applied, RWE recommends Bridgeton encourage residents to install filter strips along the riverbanks wherever possible to reduce erosion.

Level Spreader

Level Spreaders are measures that reduce the erosive energy of concentrated flows by distributing runoff as sheet flow to stabilized vegetative surfaces. Level Spreaders, of which there are many types, may also promote infiltration and improved water quality.

Pros and Cons

Below is a short summary of potential pros and cons of using level spreaders for stormwater erosion in the AOCs.

Pros	Cons
Diffuse concentrated flows from stormwater	Not effective when discharging onto steep
collection systems	slopes
Can be combined with bioengineered	High maintenance
streambank stabilization techniques	
	Not suitable for space constrained applications

Costs

Typical costs for construction tend to be on the order of \$10/linear foot to \$75/linear foot depending on the size of the stormwater conveyance pipe connected to the level spreader. Additional construction costs may include additional piping and ancillary structures such as manholes. Costs associated with

design and permitting for the project can be assumed to be 33 percent of the construction costs for this technique.

RWE recommends the installation of level spreaders be considered to address the runoff in AOC#4.

5.0 Recommendations

RWE recommends Bridgeton pursue options to stabilize the various AOCs in the near-term. Based on the preliminary investigations completed and the review of the stabilization techniques available, it is recommended that Bridgeton consider the following stabilization techniques for each of the Areas of Concern:

- AOC#1 A VMSE wall should be considered. The sinkhole should be monitored and flows from High Falls Creek should be monitored to determine if continued groundwater influence will affect the area in the future.
- AOC#2 A VMSE wall or gabions should be considered. The area is narrow, and the erosion has the potential to encroach into the active travelway within the next few years.
- AOC#3 A drop manhole structure is recommended. This pipe is undersized and not placed appropriately to capture the runoff from the roadway.
- AOC#4 This area
- AOC#5 A VMSE wall, half dense riprap, or a timber crib wall should be considered in this location. The area is actively eroding and will encroach in the active travelway after a large storm event or high flow event along the Delaware.
- AOC#6 The use of vegetated swales and potentially retaining walls should be considered for this AOC. The area needs a detailed engineering analysis of the existing drainage systems from River Road to determine the placement of the stabilization measures and the need for these measures at this time.
- AOC#7 This area is not actively eroding and does not show erosion warranting corrective measures at this time. RWE recommends monitoring this area in the future and utilizing one of the measures included in this study at such time that it is warranted.

Regulatory Review

Regardless of the design approach selected, it is anticipated that approvals will be necessary from the following regulatory agencies at a minimum:

- United States Army Corps of Engineers
- Pennsylvania Department of Environmental Protection
- Pennsylvania Department of Transportation
- Bucks County Conservation District

Prior to commencing with the design phase, RWE recommends completing a pre-application meeting with the United States Army Corps of Engineers and the Pennsylvania Department of Environmental Protection to ensure that the design approach is acceptable.

Anticipated Timeline

It is anticipated that the following general project timeline can be anticipated for the work:

- Design Phase 4-8 months
- Permitting Phase 9-18 months
- Construction Phase 3-6 months

As such, the overall timeframe for completion of the work can be assumed to be between 16 and 32 months.

Appendix A

Supporting Maps

Appendix B

Soil Information

AIA—Alton gravelly loam, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: I7n6 Elevation: 0 to 910 feet Mean annual precipitation: 28 to 50 inches Mean annual air temperature: 45 to 57 degrees F Frost-free period: 120 to 210 days Farmland classification: All areas are prime farmland

Map Unit Composition

Alton, gravelly loam, and similar soils: 90 percent Minor components: 6 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Alton, Gravelly Loam

Setting

Landform: Terraces, alluvial fans Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread Down-slope shape: Convex, linear Across-slope shape: Convex, linear Parent material: Sandy and gravelly outwash and alluvium derived from sedimentary and metamorphic rock

Typical profile

Ap - 0 to 7 inches: gravelly loam *Bw - 7 to 41 inches:* very gravelly coarse sandy loam *2C - 41 to 62 inches:* extremely gravelly coarse sand

Properties and qualities

Slope: 0 to 3 percent Depth to restrictive feature: 60 to 99 inches to lithic bedrock Drainage class: Well drained Runoff class: Very low

Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None

Frequency of ponding: None

Calcium carbonate, maximum content: 10 percent

Available water capacity: Low (about 4.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2s Hydrologic Soil Group: A Hydric soil rating: No

Minor Components

Udorthents, gravelly

Percent of map unit: 2 percent Hydric soil rating: No

Udorthents, sandy

Percent of map unit: 2 percent *Hydric soil rating:* No

Matapeake

Percent of map unit: 1 percent Landform: Hillslopes Landform position (two-dimensional): Summit, shoulder Landform position (three-dimensional): Interfluve, side slope Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

Conotton

Percent of map unit: 1 percent Landform: Outwash terraces Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

Bo—Bowmansville-Knauers silt loams

Map Unit Setting

National map unit symbol: 17nk Elevation: 150 to 900 feet Mean annual precipitation: 36 to 50 inches Mean annual air temperature: 45 to 57 degrees F Frost-free period: 150 to 210 days Farmland classification: Not prime farmland

Map Unit Composition

Bowmansville and similar soils: 41 percent Knauers and similar soils: 39 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Bowmansville

Setting

Landform: Flood plains

Landform position (two-dimensional): Footslope, toeslope

Landform position (three-dimensional): Head slope

Down-slope shape: Concave, linear

Across-slope shape: Linear, concave

Parent material: Recent alluvial deposits

weathered from sandstone and siltstone

Typical profile

Ap - 0 to 7 inches: silt loam

Bg - 7 to 26 inches: silty clay loam

Cg - 26 to 43 inches: fine sandy loam

2Cg - 43 to 65 inches: stratified gravel to sand

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: 72 to 99 inches to lithic bedrock
Drainage class: Somewhat poorly drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.60 in/hr)
Depth to water table: About 0 to 18 inches
Frequency of flooding: OccasionalNone
Frequency of ponding: None
Available water capacity: Moderate (about 8.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3w Hydrologic Soil Group: C/D Hydric soil rating: No

Description of Knauers

Setting

Landform: Flood plains

Landform position (two-dimensional): Toeslope, footslope Landform position (three-dimensional): Tread Down-slope shape: Linear, concave Across-slope shape: Linear, concave Parent material: Recent alluvium derived from sandstone and

shale Typical profile

A - 0 to 8 inches: silt loam Bg1 - 8 to 17 inches: silt loam Bg2 - 17 to 24 inches: gravelly sandy loam 2Cg - 24 to 60 inches: stratified sand to gravelly sandy loam

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: 72 to 99 inches to lithic bedrock
Drainage class: Poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.60 in/hr)
Depth to water table: About 0 inches
Frequency of flooding: OccasionalNone
Frequency of ponding: Frequent
Available water capacity: Low (about 5.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4w Hydrologic Soil Group: C/D Hydric soil rating: Yes

Minor Components

Rowland

Percent of map unit: 20 percent Landform: Flood plains Landform position (two-dimensional): Toeslope, footslope Landform position (three-dimensional): Head slope, base slope Down-slope shape: Linear, concave Across-slope shape: Linear, concave Hydric soil rating: No
DaA—Delaware fine sandy loam, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 17p8 Elevation: 0 to 910 feet Mean annual precipitation: 28 to 50 inches Mean annual air temperature: 45 to 57 degrees F Frost-free period: 110 to 210 days Farmland classification: All areas are prime farmland

Map Unit Composition

Delaware and similar soils: 90 percent Minor components: 9 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Delaware

Setting

Landform: Terraces Landform position (two-dimensional): Backslope, footslope Landform position (three-dimensional): Tread Down-slope shape: Linear, convex Across-slope shape: Linear, convex Parent material: Postglacial alluvium derived from sandstone and shale

Typical profile

Ap - 0 to 10 inches: fine sandy loam *Bw - 10 to 40 inches:* very fine sandy loam *C - 40 to 87 inches:* loamy fine sand

Properties and qualities

Slope: 0 to 3 percent Depth to restrictive feature: 72 to 99 inches to lithic bedrock Drainage class: Well drained Runoff class: Very low Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr) Depth to water table: More than 80 inches Frequency of flooding: Rare Frequency of ponding: None Available water capacity: Moderate (about 7.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 1 Hydrologic Soil Group: A Hydric soil rating: No

Minor Components

Alton

Percent of map unit: 5 percent Landform: Alluvial fans, terraces Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread Down-slope shape: Convex, linear Across-slope shape: Convex, linear Hydric soil rating: No

Conotton

Percent of map unit: 2 percent Landform: Stream terraces Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread, riser Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

Hatboro

Percent of map unit: 1 percent Landform: Flood plains Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread Down-slope shape: Concave, linear Across-slope shape: Concave, linear Hydric soil rating: Yes

Nanticoke

Percent of map unit: 1 percent Landform: Tidal flats Landform position (two-dimensional): Footslope Landform position (three-dimensional): Talf Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: Yes

HbA—Hatboro-Codorus complex, 0 to 3 percent slopes, frequently flooded

Map Unit Setting

National map unit symbol: 2w06g Elevation: 90 to 680 feet Mean annual precipitation: 47 to 51 inches Mean annual air temperature: 48 to 57 degrees F Frost-free period: 180 to 210 days Farmland classification: Not prime farmland

Map Unit Composition

Hatboro, frequently, and similar soils: 60 percent Codorus, occasional, and similar soils: 35 percent Minor components: 5 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Hatboro, Frequently

Setting

Landform: Flood plains Landform position (two-dimensional): Toeslope, footslope Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Concave Parent material: Loamy alluvium derived from greenstone and/or phyllite and/or quartzite and/or schist

Typical profile

A - 0 to 11 inches: silt loam Bg1 - 11 to 18 inches: silt loam Bg2 - 18 to 29 inches: silt loam BCg - 29 to 44 inches: silt loam Cg1 - 44 to 55 inches: silty clay loam Cg2 - 55 to 80 inches: sandy loam

Properties and qualities

Slope: 0 to 3 percent Depth to restrictive feature: More than 80 inches Drainage class: Poorly drained Runoff class: Negligible Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr) Depth to water table: About 0 to 6 inches Frequency of flooding: FrequentNone Frequency of ponding: Frequent Available water capacity: High (about 9.8 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 5w Hydrologic Soil Group: B/D Hydric soil rating: Yes

Description of Codorus, Occasional

Setting

Landform: Flood plains Landform position (two-dimensional): Toeslope, footslope Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Concave Parent material: Loamy alluvium derived from phyllite and/or mica schist and/or greenstone and/or old loamy alluvium derived from phyllite and/or mica schist and/or greenstone

Typical profile

Ap - 0 to 11 inches: silt loam Bw1 - 11 to 18 inches: silt loam Bw2 - 18 to 40 inches: gravelly silt loam 2C - 40 to 80 inches: very gravelly silt loam

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Moderately well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr)
Depth to water table: About 18 to 30 inches
Frequency of flooding: NoneOccasional
Frequency of ponding: None
Available water capacity: Moderate (about 7.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2w Hydrologic Soil Group: C Hydric soil rating: No

Minor Components

Delanco

Percent of map unit: 5 percent Landform: Stream terraces Landform position (two-dimensional): Summit Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Convex Hydric soil rating: No

Pr—Pits, quarry

Map Unit Setting

National map unit symbol: 17ry Mean annual precipitation: 40 to 46 inches Mean annual air temperature: 48 to 57 degrees F Frost-free period: 161 to 215 days Farmland classification: Not prime farmland

Map Unit Composition

Pits, quarries: 90 percent *Minor components:* 10 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Pits, Quarries

Setting

Landform: Hills Down-slope shape: Linear, convex Across-slope shape: Convex, linear Parent material: Pits

Minor Components

Waste areas

Percent of map unit: 10 percent Hydric soil rating: No

W—Water

Map Unit Setting

National map unit symbol: 17th Mean annual precipitation: 36 to 50 inches Mean annual air temperature: 46 to 59 degrees F Frost-free period: 120 to 214 days Farmland classification: Not prime farmland

Map Unit Composition

Water: 100 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Water

Setting

Parent material: Rivers streams ponds

Properties and qualities

Runoff class: Negligible *Frequency of ponding:* Frequent

Data Source Information

Soil Survey Area:Bucks County, PennsylvaniaSurvey Area Data:Version 17, Jun 4, 2020

Appendix C

Stream Information

High Falls Creek`

StreamStats

https://streamstats.usgs.gov/ss/

StreamStats Report

 Region ID:
 PA

 Workspace ID:
 PA20201115212855510000

 Clicked Point (Latitude, Longitude):
 40.57309, -75.12050

 Time:
 2020-11-15 16:29:11 -0500

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRN	Drainage quality index from STATSGO	3.7	dimensionless
DRNAREA	Area that drains to a point on a stream	2.32	square miles
CARBON	Percentage of area of carbonate rock	0	percent
BSLOPD	Mean basin slope measured in degrees	2.5615	degrees
ROCKDEP	Depth to rock	4.5	feet
URBAN	Percentage of basin with urban development	1.3906	percent
ELEV	Mean Basin Elevation	499	feet

Parameter Code	Parameter Description	Value	Unit
PRECIP	Mean Annual Precipitation	46	inches
FOREST	Percentage of area covered by forest	86.2389	percent

Peak-Flow Statistics Parameters(Peak Flow Region 4 SR 2019 5094)

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	2.32	square miles	1.2	512
CARBON	Percent Carbonate	0	percent	0	68.5

Peak-Flow Statistics Flow Report/Peak Flow Region 4 SIR 2019 5094

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SEp
2 Year Peak Flood	413	ft*3/s	40.4
5 Year Peak Flood	717	ft*3/s	33.1
10 Year Peak Flood	969	ft*3/s	30.9
25 Year Peak Flood	1340	ft*3/s	29.8
50 Year Peak Flood	1650	ft*3/s	30.4
100 Year Peak Flood	1990	ft*3/s	31.5
200 Year Peak Flood	2360	ft*3/s	32.7
500 Year Peak Flood	2910	ft*3/s	35.4

Peak-Flow Statistics Citations

Roland, M.A., and Stuckey, M.H.,2019, Development of regression equations for the estimation of flood flows at ungaged streams in Pennsylvania: U.S. Geological Survey Scientific Investigations Report 2019–5094, 36 p. (https:// doi.org/10.3133/sir20195094)

Low-Flow Statistics P	arameters).ow Row Region 1				
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	2.32	square miles	4.78	1150

11/15/2020, 4:31 PM

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
BSLOPD	Mean Basin Slope degrees	2.5615	degrees	1.7	6.4
ROCKDEP	Depth to Rock	4,5	feet	4.13	5.21
URBAN	Percent Urban	1.3906	percent	0	89

Low-Flow Statistics Disclaimerstow Region 1]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Low-Flow Statistics Flow Reports on Flow Region 10

Statistic	Value	Unit
7 Day 2 Year Low Flow	0.175	ft^3/s
30 Day 2 Year Low Flow	0.269	ft^3/s
7 Day 10 Year Low Flow	0.0585	ft^3/s
30 Day 10 Year Low Flow	0.0956	ft*3/s
90 Day 10 Year Low Flow	0.211	ft^3/s

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

Annual Flow Statistic	s Parametersplatewide Mean and Base Flow				
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	2.32	square miles	2.26	1720
ELEV	Mean Basin Elevation	499	feet	130	2700
PRECIP	Mean Annual Precipitation	46	inches	33.1	50.4
FOREST	Percent Forest	86.2389	percent	5.1	100
URBAN	Percent Urban	1.3906	percent	0	89
CARBON	Percent Carbonate	0	percent	0	99

Annual Flow Statistics Flow Report[statewide Mean and Base Flow]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	SEp
Mean Annual Flow	3.77	ft*3/s	12	12
Harmonic Mean Streamflow	1.02	ft*3/s	38	38

Annual Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	2.32	square miles	2.26	1720
PRECIP	Mean Annual Precipitation	46	inches	33.1	50.4
CARBON	Percent Carbonate	0	percent	0	99
FOREST	Percent Forest	86.2389	percent	5.1	100
URBAN	Percent Urban	1.3906	percent	0	89

Base Flow Statistics Parameters(statewide Mean and Base Flow)

Base Flow Statistics Flow Report[Statewide Mean and Base Flow]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	SEp
Base Flow 10 Year Recurrence Interval	1.88	ft*3/s	21	21
Base Flow 25 Year Recurrence Interval	1.68	ft*3/s	21	21
Base Flow 50 Year Recurrence Interval	1.57	ft*3/s	23	23

Base Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

Bankfull Statistics Parameters(statewide bankful Noncarbonate 2018 5066)

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	2.32	square miles	2.62	207
CARBON	Percent Carbonate	0	percent		
Bankfull Statistics Disc	laimerszturevide Bankful Noncarbona	w 2018 5066)			
One or more of the unknown errors Bankfull Statistics Flov	parameters is outside the s	euggested r	ange. Estimates we	re extrapolated	with
Statistic			Value	Unit	
Bankfull Area			24.1	ft*2	
Bankfull Streamflo					
	w		96.5	ft*3/	/s
Bankfull Width	w		96.5 21	ft*3/ ft	/s

Bankfull Statistics Citations

Clune, J.W., Chaplin, J.J., and White, K.E.,2018, Comparison of regression relations of bankfull discharge and channel geometry for the glaciated and nonglaciated settings of Pennsylvania and southern New York: U.S. Geological Survey Scientific Investigations Report 2018–5066, 20 p. (https://doi.org/10.3133/sir20185066)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.4.0

Unnamed Tributary

StreamStats

https://streamstats.usgs.gov/ss/

StreamStats Report

 Region ID:
 PA

 Workspace ID:
 PA20201115215154833000

 Clicked Point (Latitude, Longitude):
 40.56875, -75.10632

 Time:
 2020-11-15 16:52:11 -0500

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	0.6	square miles
CARBON	Percentage of area of carbonate rock	0	percent
BSLOPD	Mean basin slope measured in degrees	6.8524	degrees
ROCKDEP	Depth to rock	3	feet
URBAN	Percentage of basin with urban development	14.7113	percent
ELEV	Mean Basin Elevation	315	feet
PRECIP	Mean Annual Precipitation	47	inches

Parameter Code	Parameter Description	Value	Unit
FOREST	Percentage of area covered by forest	67.6555	percent
DRN	Drainage quality index from STATSGO	3	dimensionless

Peak-Flow Statistics Parameters(Peak Flow Region 4 SIR 2019 5094)

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.6	square miles	1.2	512
CARBON	Percent Carbonate	0	percent	0	68.5

Peak-Flow Statistics Disclaimers(Peak Flow Region 4 SIR 2019 5094)

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Peak-Flow Statistics Flow Report/Heat Flow Report 4 588 2014 5014

Statistic	Value	Unit
2 Year Peak Flood	160	ft^3/s
5 Year Peak Flood	289	ft^3/s
10 Year Peak Flood	398	ft^3/s
25 Year Peak Flood	560	ft^3/s
50 Year Peak Flood	698	ft^3/s
100 Year Peak Flood	849	ft^3/s
200 Year Peak Flood	1010	ft^3/s
500 Year Peak Flood	1260	ft^3/s

Peak-Flow Statistics Citations

Roland, M.A., and Stuckey, M.H.,2019, Development of regression equations for the estimation of flood flows at ungaged streams in Pennsylvania: U.S. Geological Survey Scientific Investigations Report 2019–5094, 36 p. (https:// doi.org/10.3133/sir20195094)

Low-Flow Statistics Parameters(Low Row Region 1)

11/15/2020, 5:23 PM

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.6	square miles	4.78	1150
BSLOPD	Mean Basin Slope degrees	6.8524	degrees	1.7	6.4
ROCKDEP	Depth to Rock	3	feet	4.13	5.21
URBAN	Percent Urban	14.7113	percent	0	89

Low-Flow Statistics Disclaimerstaw Row Region 1]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Low-Flow Statistics Flow Reports.ow Review Region 10

Statistic	Value	Unit
7 Day 2 Year Low Flow	0.0351	ft*3/s
30 Day 2 Year Low Flow	0.0558	ft^3/s
7 Day 10 Year Low Flow	0.0115	ft^3/s
30 Day 10 Year Low Flow	0.0202	ft^3/s
90 Day 10 Year Low Flow	0.0369	ft^3/s

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

Annual Flow Statistics Pa	ameterspitatewide Mean and Base Flow
---------------------------	--------------------------------------

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.6	square miles	2.26	1720
ELEV	Mean Basin Elevation	315	feet	130	2700
PRECIP	Mean Annual Precipitation	47	inches	33.1	50.4
FOREST	Percent Forest	67.6555	percent	5.1	100
URBAN	Percent Urban	14.7113	percent	0	89
CARBON	Percent Carbonate	0	percent	0	99

Annual Flow Statistics Disclaimers(statewide Mean and Base Flow)

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Annual Flow Statistics Flow Report Statewide Mean and Base Flow]

Statistic	Value	Unit
Mean Annual Flow	0.953	ft*3/s
Harmonic Mean Streamflow	0.276	ft^3/s

Annual Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

Base Flow Statistics Parameters(statewide Mean and Base Flow)						
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit	
DRNAREA	Drainage Area	0.6	square miles	2.26	1720	
PRECIP	Mean Annual Precipitation	47	inches	33.1	50.4	
CARBON	Percent Carbonate	0	percent	0	99	
FOREST	Percent Forest	67.6555	percent	5.1	100	
URBAN	Percent Urban	14.7113	percent	0	89	

Base Flow Statistics Disclaimersparewide Mean and Base Flow!

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Base Flow Statistics Flow Reportstatewide Mean and Base Flow

Statistic	Value	Unit
Base Flow 10 Year Recurrence Interval	0.47	ft*3/s
Base Flow 25 Year Recurrence Interval	0.422	ft*3/s
Base Flow 50 Year Recurrence Interval	0.395	ft*3/s

Base Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

Bankfull Statistics Parameters(statewide bankful Noncarbonate 2018 5066)

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.6	square miles	2.62	207
CARBON	Percent Carbonate	0	percent		

Bankfull Statistics Disclaimerstanswide bankful Noncarbonate 2018 50%)

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Bankfull Statistics Flow Report/Innewide Bankful Noncartonate 2018 5064

Statistic	Value	Unit
Bankfull Area	8.24	ft*2
Bankfull Streamflow	30.4	ft*3/s
Bankfull Width	11.3	ft
Bankfull Depth	0.772	ft

Bankfull Statistics Citations

Clune, J.W., Chaplin, J.J., and White, K.E., 2018, Comparison of regression relations of bankfull discharge and channel geometry for the glaciated and nonglaciated settings of Pennsylvania and southern New York: U.S. Geological Survey Scientific Investigations Report 2018–5066, 20 p. (https://doi.org/10.3133/sir20185066)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS).

Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.4.0

Mine Spring Creek

StreamStats

StreamStats Report

 Region ID:
 PA

 Workspace ID:
 PA20201115214353602000

 Clicked Point (Latitude, Longitude):
 40.56088, -75.09400

 Time:
 2020-11-15 16:44:08 -0500

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	0.52	square miles
CARBON	Percentage of area of carbonate rock	0	percent
BSLOPD	Mean basin slope measured in degrees	6.3072	degrees
ROCKDEP	Depth to rock	3.7	feet
URBAN	Percentage of basin with urban development	10.7842	percent
ELEV	Mean Basin Elevation	382	feet
PRECIP	Mean Annual Precipitation	47	inches

Parameter Code	Parameter Description	Value	Unit
FOREST	Percentage of area covered by forest	76.7289	percent
DRN	Drainage quality index from STATSGO	3.2	dimensionless

Peak-Flow Statistics Parameters(Peak Flow Region 4 SIR 2019 5094)

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.52	square miles	1.2	512
CARBON	Percent Carbonate	0	percent	0	68.5

Peak-Flow Statistics Disclaimers(Peak Row Region 4 SIR 2019 509-Q

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Peak-Flow Statistics Flow Report Peak New Region 4 SBR 2019 5054

Statistic	Value	Unit
2 Year Peak Flood	145	ft*3/s
5 Year Peak Flood	262	ft*3/s
10 Year Peak Flood	362	ft*3/s
25 Year Peak Flood	511	ft*3/s
50 Year Peak Flood	637	ft*3/s
100 Year Peak Flood	776	ft*3/s
200 Year Peak Flood	927	ft*3/s
500 Year Peak Flood	1150	ft*3/s

Peak-Flow Statistics Citations

Roland, M.A., and Stuckey, M.H.,2019, Development of regression equations for the estimation of flood flows at ungaged streams in Pennsylvania: U.S. Geological Survey Scientific Investigations Report 2019–5094, 36 p. (https:// doi.org/10.3133/sir20195094)

Low-Flow Statistics Parameters(Low Flow Region 1)

11/15/2020, 4:45 PM

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.52	square miles	4.78	1150
BSLOPD	Mean Basin Slope degrees	6.3072	degrees	1.7	6.4
ROCKDEP	Depth to Rock	3.7	feet	4.13	5.21
URBAN	Percent Urban	10.7842	percent	0	89

Low-Flow Statistics Disclaimers), ow flow Region 1

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Low-Flow Statistics Flow Reports on Flow Region 1

Statistic	Value	Unit
7 Day 2 Year Low Flow	0.0626	ft*3/s
30 Day 2 Year Low Flow	0.0896	ft^3/s
7 Day 10 Year Low Flow	0.0235	ft*3/s
30 Day 10 Year Low Flow	0.0365	ft*3/s
90 Day 10 Year Low Flow	0.0605	ft*3/s

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

Annual Flow Statistics Parameters(Indexide Mean and Base Flow)						
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit	
DRNAREA	Drainage Area	0.52	square miles	2.26	1720	
ELEV	Mean Basin Elevation	382	feet	130	2700	
PRECIP	Mean Annual Precipitation	47	inches	33.1	50.4	
FOREST	Percent Forest	76.7289	percent	5.1	100	
URBAN	Percent Urban	10.7842	percent	0	89	
CARBON	Percent Carbonate	0	percent	0	99	

11/15/2020, 4:45 PM

Annual Flow Statistics Disclaimers/sumwide Mean and Base Flow

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Annual Flow Statistics Flow Report[statewide Mean and Base Flow]

Statistic	Value	Unit
Mean Annual Flow	0.852	ft*3/s
Harmonic Mean Streamflow	0.238	ft^3/s

Annual Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

Base Flow Statistics Parameters(statewide Mean and Base Flow)					
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.52	square miles	2.26	1720
PRECIP	Mean Annual Precipitation	47	inches	33.1	50.4
CARBON	Percent Carbonate	0	percent	0	99
FOREST	Percent Forest	76.7289	percent	5.1	100
URBAN	Percent Urban	10.7842	percent	0	89

Base Flow Statistics Disclaimersplatewde Mean and Base Flow

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Base Flow Statistics Flow Reportstatewide Mean and Base Flow

Statistic	Value	Unit
Base Flow 10 Year Recurrence Interval	0.431	ft*3/s
Base Flow 25 Year Recurrence Interval	0.388	ft^3/s
Base Flow 50 Year Recurrence Interval	0.363	ft^3/s

11/15/2020, 4:45 PM

Base Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

Bankfull Statistics Parameters(statewide Bankful Noncarbonate 2018 5066)

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.52	square miles	2.62	207
CARBON	Percent Carbonate	0	percent		

Bankfull Statistics Disclaimerstatewate Bankful Noncartonate 2018 50582

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Bankfull Statistics Flow Reportstatewide Bankful Noncartonate 2018 5006

Statistic	Value	Unit
Bankfull Area	7.35	ft^2
Bankfull Streamflow	26.9	ft^3/s
Bankfull Width	10.6	ft
Bankfull Depth	0.738	ft

Bankfull Statistics Citations

Clune, J.W., Chaplin, J.J., and White, K.E.,2018, Comparison of regression relations of bankfull discharge and channel geometry for the glaciated and nonglaciated settings of Pennsylvania and southern New York: U.S. Geological Survey Scientific Investigations Report 2018–5066, 20 p. (https://doi.org/10.3133/sir20185066)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS).

Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.4.0

Lodi Creek

StreamStats

StreamStats Report

 Region ID:
 PA

 Workspace ID:
 PA20201115214805030000

 Clicked Point (Latitude, Longitude):
 40.55222, -75.08421

 Time:
 2020-11-15 16:48:21 -0500

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	1.55	square miles
CARBON	Percentage of area of carbonate rock	0	percent
BSLOPD	Mean basin slope measured in degrees	8.025	degrees
ROCKDEP	Depth to rock	4.3	feet
URBAN	Percentage of basin with urban development	4.9575	percent
ELEV	Mean Basin Elevation	405	feet
PRECIP	Mean Annual Precipitation	47	inches

Parameter Code	Parameter Description	Value	Unit
FOREST	Percentage of area covered by forest	78.7556	percent
DRN	Drainage quality index from STATSGO	3.6	dimensionless

Peak-Flow Statistics Parameters/Peak Row Region 4 SR 2019 5094

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	1.55	square miles	1.2	512
CARBON	Percent Carbonate	0	percent	0	68.5

Peak-Flow Statistics Flow Report/Peak Flow Region 4 SIR 2019 5094

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SEp
2 Year Peak Flood	311	ft*3/s	40.4
5 Year Peak Flood	546	ft*3/s	33.1
10 Year Peak Flood	743	ft*3/s	30.9
25 Year Peak Flood	1030	ft*3/s	29.8
50 Year Peak Flood	1280	ft*3/s	30.4
100 Year Peak Flood	1540	ft*3/s	31.5
200 Year Peak Flood	1840	ft*3/s	32.7
500 Year Peak Flood	2270	ft*3/s	35.4

Peak-Flow Statistics Citations

Roland, M.A., and Stuckey, M.H.,2019, Development of regression equations for the estimation of flood flows at ungaged streams in Pennsylvania: U.S. Geological Survey Scientific Investigations Report 2019–5094, 36 p. (https:// doi.org/10.3133/sir20195094)

Low-Flow Statistics P	arameters).ow Row Region 1				
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	1.55	square miles	4.78	1150

11/15/2020, 4:49 PM

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
BSLOPD	Mean Basin Slope degrees	8.025	degrees	1.7	6.4
ROCKDEP	Depth to Rock	4.3	feet	4.13	5.21
URBAN	Percent Urban	4.9575	percent	0	89

Low-Flow Statistics DisclaimersLow Region 1]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Low-Flow Statistics Flow Reports on Flow Region 10

Statistic	Value	Unit
7 Day 2 Year Low Flow	0.435	ft^3/s
30 Day 2 Year Low Flow	0.536	ft^3/s
7 Day 10 Year Low Flow	0.21	ft^3/s
30 Day 10 Year Low Flow	0.272	ft^3/s
90 Day 10 Year Low Flow	0.356	ft*3/s

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

Annual Flow Statistics Parameterspanewide Mean and Base Flow					
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	1.55	square miles	2.26	1720
ELEV	Mean Basin Elevation	405	feet	130	2700
PRECIP	Mean Annual Precipitation	47	inches	33.1	50.4
FOREST	Percent Forest	78.7556	percent	5.1	100
URBAN	Percent Urban	4.9575	percent	0	89
CARBON	Percent Carbonate	0	percent	0	99

Annual Flow Statistics Disclaimerststatewate Mean and Base How

One or more of the parameters is outside the sugge unknown errors	ested range. Estimates were extrag	oolated with
Annual Flow Statistics Flow Report Statewide Mean and Base Flow		
Statistic	Value	Unit
Mean Annual Flow	2.54	ft*3/s
Harmonic Mean Streamflow	0.723	f1*3/s

Annual Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

Base Flow Statistics Parameters(statewide Mean and Base Flow)

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	1.55	square miles	2.26	1720
PRECIP	Mean Annual Precipitation	47	inches	33.1	50.4
CARBON	Percent Carbonate	0	percent	0	99
FOREST	Percent Forest	78.7556	percent	5.1	100
URBAN	Percent Urban	4.9575	percent	0	89

Base Flow Statistics Disclaimerstitatewide Mean and Base Rowl

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Base Flow Statistics Flow Reportstatewide Mean and Base Flow]

Statistic	Value	Unit
Base Flow 10 Year Recurrence Interval	1.27	ft*3/s
Base Flow 25 Year Recurrence Interval	1.14	ft*3/s
Base Flow 50 Year Recurrence Interval	1.07	ft*3/s

Base Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

Bankfull Statistics Para	ITTERESETAtewide Bankfull Noncarbonat	a 2018 5066]			
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	1.55	square miles	2.62	207
CARBON	Percent Carbonate	0	percent		

Bankfull Statistics Disclaimersgatewide Bankfull Noncertonate 2018 5062

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Bankfull Statistics Flow Reportsteevide Bankfull Noncastonere 2018 5056

Statistic	Value	Unit	
Bankfull Area	17.5	ft*2	
Bankfull Streamflow	68.4	ft*3/s	
Bankfull Width	17.5	ft	
Bankfull Depth	1.05	ft	

Bankfull Statistics Citations

Clune, J.W., Chaplin, J.J., and White, K.E., 2018, Comparison of regression relations of bankfull discharge and channel geometry for the glaciated and nonglaciated settings of Pennsylvania and southern New York: U.S. Geological Survey Scientific Investigations Report 2018–5066, 20 p. (https://doi.org/10.3133/sir20185066)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any

such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.4.0

Appendix D

PennDOT Straight Line Diagrams

	Ste	1 0 003 BERM LN (7450)	8810GE (7446) (7446)	1 0 0 0 3 BRIDGET (SR1017 (T443)	
	m	6	z r z	N N N N N N N N N N N N N N N N N N N	U 77 N 00
	wate	•		z GIO	B 11
	PH C	1		01-1	2
Stormwater Crossing:N	Stormwater Crossing: K rossing: L 185742 FT Stormwater Crossing:M	Stormwater Crossing: I 1970+17 187786 FT 0760/0000 Stormwater Crossing: J	Stormwater Crossing: G 0760/2222 Stormwater Crossing: H 0760/1690	2031+84 191074 FT 0/1514) 0770/0000 Stormwater Crossing: D Stormwater Crossing: E Stormwater Crossing: F 0760/2481	12/22/2019 SLB COUN GETON TAL LEN: 40.: Stormwater Crossing: B Stormwater Crossing: C
	1 11	18-1	8 I % I		
F	1 11	1		111	
	5	5		5	
07	0 10 7	07 18 07	07	19	1 A L 5 H T 0 7
4	0 0-0 0	5050	6 0 6 0	5 5 5 4 - 4 4 0 0 8	Y D Y D Y S
2	N 000 0	1020	2 22	22222	>> 00 84
N	NOAV	0 0 0		UONO	- U - U ZE
0	2 0 0 0 5	15	95	5 0 0 F T	5 8 9
-0	FOFOFOFO		F9 0-F9	rororor	7050 -0
			D- OZM-	$m \rightarrow m \rightarrow m \rightarrow m$	00 O
1	0 0 0	1 0 1	I <mi< td=""><td>1 1 1 0</td><td>1 1 m- C</td></mi<>	1 1 1 0	1 1 m- C
0 1	0 1400 10 1	014 01	0: -120:		0:0: - ZT
CH-	6-004-N-	4	N	4-N-N-0	4-4- Z -40
Ci >	TO	40 44N	U> >0>	0>0>0>>	m <o<n< td=""></o<n<>
-0	-0 -0-0	-0 -0	-0 -0	-0-0-0	-0-0 W WZ
LA 20		ZAG Z-	Z- Z-	Z-Z-Z-W	Z>Z- 2 CC
-10			-0 2-0	-009	
	04 404 4 77-7 37	× 8 ×	> ->	> > D> P	> > > 0 0 m
-m	>	C.20 B.02	-0 0-0	-D->-mm	r⊅r≯ ⊌
		DZ DO	mz mmz		
	CT ALCO	8.1 20	20 20 20	20	
			-		
u n	E N+C CO	C C C Z A Z	z c	Z Z Z B	

	1 0 00326 0 01 1873 Jugtown Hill Rd (T 4 4 5)	(7451) HILL RD	EXTRACT DATE: 12/1 PRINT DATE: 12/2 DIR: NUN: BRIDGETC
174866 FT	+19 178125 FT 0720/0000	183470 FT 0730/1471 181782 FT	8/2019 SLD COU 12/2019 SLD COU
			ATY MANAGEMENT ATY/SR - ANNUA 574 MI. RIGH
75262 FT 1 0 700/0000 LEN 690/2805 LEN 690/2323 LEN	720/0115 LEN 78521 FT LEN 720/0000 LEN 700/2869 LEN 018	740/0480 TIN 83866 FT 10 STR 740/0000 LEN 8330/1140 LEN 8321/8550 LEN 730/10550 LEN 730/0000 LEN 015 730/0000 LEN 015 015 015 015 015 015 015 015 015 015	L PRINT CO T MUN: BRIDG
0032600111 "H 00"W 1259 =0028 NSTALL =0030 NSTALL =0030 NSTALL	=0042 INSTALL GTH(AH 3657 ME =0029 INSTALL =0029 INSTALL =0032 INSTALL		UNTY: BUCKS 1 1 1 DN T ^{SR} : 3
HD H KA H KA	ED UNKN FA 3259) FA UNKN ED UNKN	927+01 407000 407000 16000 100000 100000 100000 10000 10000 10000 100	2 5 9

Appendix E

FEMA Information

FLOODING SOURCE		FLOODWAY			BASE FLOOD WATER SURFACE ELEVATION (FEET NAVD)			
CROSS SECTION	DISTANCE	WIDTHP (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
DELAWARE RIVER (continued)					-	1		
EA	856.47 / 162.21	1428 / 1083 / 1837	29492	9.4	117.6	117.6	118.0	0.4
EB	857.95 / 162.49	1032/618/1510	25458	10.9	118.3	118.3	118.8	0.5
EC	859.48/162.78	1208 / 772 / 2040 ³	27855	10.0	119.7	119.7	120.1	0.4
ED	80.987 163.08	1828 / 1238 / 2389	29684	0.4	120.7	120.7	121.1	0.4
33	862.48/163.35	2940/2396/2424	43521	6.4	122.2	122.2	122.6	0.4
EF	864.027163.64	2031 / 1584 / 23083	32844	8.5	122.6	122.6	122.8	0.3
60	865.28/183.88	1786 / 1131 / 22104	27977	9.9	123.0	123.0	123,4	0.4
EH	867.35/164.27	1607 / 1103 / 17223	30287	9.2	124.0	124.0	125,2	0.4
Ei	669.99/164.77	2209 / 1879 / 1890	40518	8.4	128.4	120.4	120.7	0.3
EJ	871.48/165.08	2213/1847/1847	24176	11.5	126.7	126.7	127.0	0.3
EK	872.94 / 165.33	2147 / 1504 / 19402	42301	8.8	128.9	128.9	129.1	0.2
EL	674 53 / 165.63	1691 / 1293 / 15783	30237	10.1	129.4	129.4	129.6	0.2
EM	876.00/165.91	1430/789/10529	27017	10.3	130.2	130.2	130.4	0.2
EN	877.48/106.19	1101/727/040*	25401	10.9	131.2	131.2	131.5	0.3
EG	878.91/106.40	981/522/522	26323	10.5	132.2	132.2	132.5	0.5
EP	880.44 / 100.75	929/540/562	25003	11.1	132.0	132,9	133.3	0.4

²Width / Width within Bucks County / Width within Bucks County (0.2 ft encroachment) ¹Cross section includes small lengths of high ground above the 0.2 ft encroachment floodway

FEDERAL EMERGENCY MANAGEMENT AGENCY BUCKS COUNTY, PA (ALL JURISDICTIONS)

FLOODWAY DATA

DELAWARE RIVER

nt file (Ctrl+P)

TABLE

00

TABLE 8

FLOODING SOURCE		FLOODWAY			BASE FLOOD WATER SURFACE ELEVATION			
CROSS SECTION	DISTANCE'	WIDTH ² (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
DELAWARE RIVER (continued)		<						
EQ	001.92/107.03	1129/591/722	25088	0.0	134.3	154.3	134.6	0.3
ER	883.71/187.37	711/406/1059	22041	12.6	134.8	134.6	134.9	9.2
ES	885.30/167.67	89374527982	20968	10.3	136.7	130.7	137.2	0.5
ET	866.467.89	905/449/747	20550	10.5	137.2	137.2	137.7	0.5
EU	887.94/108.17	751/422/043	26373	10.9	137.8	137.8	138.4	0.6
EV	009.52/108.47	701/451/729	23634	11.7	138.4	138.4	138.9	0.5
EW	891.00/108.75	904/602/813	27453	10.1	139.3	139.3	139.9	0.0
EX	892.48/109.03	982/005/804	28517	9.7	140.1	140.1	\$40.7	0.6
EY	894.01/169.32	1228/895/1021	20540	9.7	140.9	140.9	141,5	0.0
EZ.	895.49/109.60	1548/1148/1284	32437	8.6	141.9	141.9	142.5	0.6
FA	896.97 / 109.88	1338/804/1230	33025	8.4	143.0	143.0	143,5	0.5
FD	898.50 / 170.17	964/693/767	26266	10.6	143.2	143.2	143.0	0.6
FC	899.98/170.45	655/310/389	22949	12.1	144.1	144.1	144.7	0.6
FD	901,61/170.74	657/410/410	21254	13.1	144.7	144.7	145.4	0.7
FE	902.93 / 171.01	659/372/394	21211	13.1	145.9	145.9	140.0	0.7
FF	904.46/171.30	914/562/632	29894	9.3	148.3	148.3	148.9	0.6
FG	905.00/171.59	1282/996/1011	33894	8.2	149.2	140.2	149.8	0.6

FEDERAL EMERGENCY MANAGEMENT AGENCY

BUCKS COUNTY, PA (ALL JURISDICTIONS)

FLOODWAY DATA

DELAWARE RIVER
TABLE 4- SUMMARY OF DISCHARGES (continued)

		PEAK DISCHARGES (cubic feet per second)			
FLOODING SOURCE AND LOCATION	DRAINAGE AREA (sq. miles)	<u>10-Percent-</u> <u>Annual-</u> <u>Chance</u>	2-Percent- Annual- Chance	<u>1-Percent-</u> <u>Annual-</u> <u>Chance</u>	0.2-Percent- Annual- Chance
DELAWARE RIVER					
At USGS Gage 01463500 at Trenton, NJ	6,780	169,000	245,000	280,000	372,000
Downstream of confluence of Tohickon Creek	6,588	168,150	243,301	277,451	366,053
At USGS Gage 01457500 at Riegelsville, PA	6,328	167,000	241,000	274,000	358,000
At Belvidere, NJ	4,535	118,000	190,000	230,000	350,000
At Port Jervis, NY	3,076	88,000	140,000	170,000	270,000

TABLE 6- MANNING'S "n" VALUES (continued)

Stream	Channel "n"	Overbank "n"
Cuttalossa Creek	*	*
Deep Run	0.035-0.045	0.030-0.700
Delaware River	0.020-0.100	0.035-0.100
East Branch Perkiomen Creek	0.04-0.05	0.045-0.13
Gallows Run	0.035-0.045	0.080-0.100